CHAPTER 1: CHEMICAL REACTIONS AND EQUATIONS CHILL CA CHILL THE PROPERTY OF THE PROPERTY OF

MR COACHING CENTER

Class 10 Karnataka Board

Short, clear, and exam-focused notes BY MR COACHING CENTER

Chemical Reaction T

A chemical reaction is a process where one or more substances (reactants) transform into new substances (**products**) with different properties

Example:

$$Mg + O_2 \longrightarrow 2NgO$$
 (1)

Practice Questions

- 1. Define a chemical reaction.
- 2. In the reaction Mg + $O_2 \longrightarrow 2$ MgO, identify the reactants and products.
- 3. List two observations indicating a chemical reaction has occurred.

TT Chemical Equation

A chemical equation represents a chemical reaction using symbols and formulas. Example:

$$Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2 \uparrow$$
 (2)

- **Reactants**: Substances that react.
- **Products**: Substances formed after the reaction.

Practice Questions

- 1. Write the chemical equation for the reaction between zinc and hydrochloric acid.
- 2. What do the symbols (s), (l), (g), and (aq) represent in a chemical equation?

III Balanced Chemical Equation

A balanced equation has an equal number of atoms of each element on both sides, following the Law of Conservation of Mass: Mass cannot be created nor destroyed in a chemical reaction.

Example:

$$H_2 + Cl_2 \longrightarrow 2 HCl$$
 (3)

Practice Questions

- 1. Why must a chemical equation be balanced?
- 2. Balance the equation: $Fe + H_2O \longrightarrow Fe_3O_4 + H_2$

IV Exothermic and Endothermic Reactions

Type	Description			Example	Observation
Exothermic	Releases	heat	en-	$C + O_2 \longrightarrow CO_2 +$	Increase in tem-
	\mathbf{ergy} .			heat	perature
Endothermic	Absorbs	heat	en-	$N_2 + O_2 + heat \longrightarrow$	Decrease in tem-
	ergy.			2 NO	perature

Additional Examples:

- Exothermic: $CaO + H_2O \longrightarrow Ca(OH)_2 + heat$
- Endothermic: $2 \operatorname{AgCl} \longrightarrow 2 \operatorname{Ag} + \operatorname{Cl}_2$ (on heating)

Practice Questions

- 1. Define exothermic and endothermic reactions with one example each.
- 2. Is the burning of magnesium an exothermic or endothermic reaction? Explain why.

V Types of Chemical Reactions

Practice Questions

- 1. Provide one example each of decomposition and displacement reactions.
- 2. Identify the type of reaction: $AgNO_3 + NaCl \longrightarrow AgCl + NaNO_3$.
- 3. Write a redox reaction and label the oxidation and reduction parts.

Type	Description	Example
Combination	Two or more substances	$2 \operatorname{Mg} + \operatorname{O}_2 \longrightarrow 2 \operatorname{MgO}$
	form a single product.	
Decomposition	A compound breaks into	$2 H_2 O \longrightarrow 2 H_2 + O_2$
	simpler substances.	
Displacement	One element replaces an-	$Zn + CuSO_4 \longrightarrow ZnSO_4 +$
	other in a compound.	Cu
Double Displacement	Exchange of ions between	$Na_2SO_4 + BaCl_2 \longrightarrow$
	two compounds.	$BaSO_4 + 2 NaCl$
Redox	Involves oxidation and re-	$CuO + H_2 \longrightarrow Cu + H_2O$
	duction.	

VI Oxidation and Reduction

- Oxidation: Addition of oxygen or removal of hydrogen.
- Reduction: Addition of hydrogen or removal of oxygen.

Example:

$$CuO + H_2 \longrightarrow Cu + H_2O$$
 (4)

- CuO is **reduced** to Cu.
- H_2 is **oxidized** to H_2O .

Practice Questions

- 1. Define oxidation and reduction with one example each.
- 2. In the above reaction, identify the oxidizing and reducing agents.

VII Effects of Oxidation in Daily Life

Corrosion

- Slow deterioration of metals due to air, moisture, or chemicals.
- Example: Rusting of iron $Fe + O_2 + H_2O \longrightarrow Fe_2O_3 \cdot xH_2O$
- Prevention: Painting, oiling, galvanizing, electroplating.

Rancidity

- Oxidation of fats and oils in food, causing bad smell/taste.
- **Prevention**: Use airtight containers, refrigeration, antioxidants.

Practice Questions

- 1. What is corrosion? Suggest one prevention method.
- 2. What is rancidity? How can it be prevented?

VIII Characteristics of Chemical Reactions

- 1. Change in state
- 2. Change in color
- 3. Gas evolution
- 4. Change in **temperature** (heat produced/absorbed)
- 5. Formation of a **precipitate**

Example:

$$AgNO_3 + NaCl \longrightarrow AgCl \downarrow + NaNO_3$$
 (5)

Practice Questions

- 1. List three characteristics of a chemical reaction.
- 2. Provide one example each for a reaction showing a change in color and gas evolution.

IX Important Examples

Reaction	Equation	
Burning of magnesium	$2 \mathrm{Mg} + \mathrm{O}_2 \longrightarrow 2 \mathrm{MgO}$	
Electrolysis of water	$2 H_2 O \longrightarrow 2 H_2 + O_2$	
Heating ferrous sulphate	$2 \operatorname{FeSO}_4 \longrightarrow \operatorname{Fe}_2 \operatorname{O}_3 +$	
	$SO_2 + SO_3$	
Iron in copper sulphate	$Fe + CuSO_4 \longrightarrow FeSO_4 +$	
	Cu	

Practice Questions

- 1. Write the equation for heating ferrous sulphate.
- 2. What type of reaction occurs when iron is dipped in copper sulphate solution?

X Key Formulae

Substance	Formula	Chemical Name
Quick lime	CaO	Calcium oxide
Slaked lime	$Ca(OH)_2$	Calcium hydroxide
Washing soda	$Na_2CO_3 \cdot 10 H_2O$	Sodium carbonate decahydrate
Baking soda	NaHCO ₃	Sodium hydrogen carbonate

Practice Questions

- 1. Write the chemical formulas for slaked lime and washing soda.
- 2. What is the chemical name of baking soda?

XI Quick Revision Tips

- Always ensure the number of atoms is balanced on both sides of the equation.
- Memorize one example for each type of reaction.
- Review oxidation effects (corrosion, rancidity).
- Practice balancing equations daily.
- Understand exothermic vs. endothermic: **burning** = **exothermic**, **decomposition** (often) = **endothermic**.